Discriminant Nonnegative Tensor Factorization Algorithms
نویسندگان
چکیده
منابع مشابه
Algorithms for Nonnegative Tensor Factorization
Nonnegative Matrix Factorization (NMF) is an efficient technique to approximate a large matrix containing only nonnegative elements as a product of two nonnegative matrices of significantly smaller size. The guaranteed nonnegativity of the factors is a distinctive property that other widely used matrix factorization methods do not have. Matrices can also be seen as second-order tensors. For som...
متن کاملGeneralized Discriminant Orthogonal Nonnegative Tensor Factorization for Facial Expression Recognition
In order to overcome the limitation of traditional nonnegative factorization algorithms, the paper presents a generalized discriminant orthogonal non-negative tensor factorization algorithm. At first, the algorithm takes the orthogonal constraint into account to ensure the nonnegativity of the low-dimensional features. Furthermore, the discriminant constraint is imposed on low-dimensional weigh...
متن کاملHierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization
In the paper we present new Alternating Least Squares (ALS) algorithms for Nonnegative Matrix Factorization (NMF) and their extensions to 3D Nonnegative Tensor Factorization (NTF) that are robust in the presence of noise and have many potential applications, including multi-way Blind Source Separation (BSS), multi-sensory or multi-dimensional data analysis, and nonnegative neural sparse coding....
متن کاملNonnegative Matrix and Tensor Factorization
T here has been a recent surge of interest in matrix and tensor factorization (decomposition), which provides meaningful latent (hidden) components or features with physical or physiological meaning and interpretation. Nonnegative matrix factorization (NMF) and its extension to three-dimensional (3-D) nonnegative tensor factorization (NTF) attempt to recover hidden nonnegative common structures...
متن کاملLearning without Labels and Nonnegative Tensor Factorization
Special thanks to my parents and friends for their love and support. 1 3-way PARAFAC model: The tensor is represented as a linear combination of r rank-1 tensors. This will provide a rank-r approximation to the original A plot of the loglikelihood functions (θ) in the case of classification for k = 1 (left, θ true = 0.75) and k = 2 (right, θ true = (0.8, 0.6) 3 A plot of the loglikelihood funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks
سال: 2009
ISSN: 1045-9227,1941-0093
DOI: 10.1109/tnn.2008.2005293